ISSN 1600-5368

Bis(5,6-dicarboxybenzimidazolium) sulfate monohydrate

Yue Cui, Qian Gao, Chao-Yan Zhang and Ya-Bo Xie*

College of Environmental and Energy Engineering, Beijing University of Technology, Beijing 100124, People's Republic of China Correspondence e-mail: xieyabo@bjut.edu.cn

Received 29 April 2009; accepted 14 May 2009

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.048; wR factor = 0.138; data-to-parameter ratio = 14.4.

In the title compound, $2C_9H_7N_2O_4^+ \cdot SO_4^{-2-} \cdot H_2O$, the sulfate S atom and the water O atom reside on a crystallographic twofold axis. In the crystal, the component species are linked by N-H···O, O-H···O and C-H···O hydrogen bonds, forming a three-dimensional network structure. An intramolecular O-H···O link is seen in the cation.

Related literature

For a related structure that contains a benzimidazole molecule, see: Gao *et al.* (2008). For the pharmacokinetics of an antiallergic benzimidazole derivative, see: Sakai *et al.* (1989). For the synthesis and chemoluminescence of an amino drivative, see: White & Matsuo (1967).

Experimental

Crystal data $2C_9H_7N_2O_4^+ \cdot SO_4^{2-} \cdot H_2O$ $M_r = 528.41$

Orthorhombic, *Pbcn* a = 14.691 (3) Å b = 7.7968 (17) Å c = 17.983 (4) Å $V = 2059.8 (8) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{\rm min} = 0.971, T_{\rm max} = 0.976$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.048 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.138 & \text{independent and constrained} \\ S &= 1.00 & \text{refinement} \\ 2413 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.46 \text{ e } \text{ Å}^{-3} \\ 168 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.40 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} N2 - H22 \cdots O1 W^{ii} \\ N1 - H25 \cdots O11^{iii} \\ C5 - H5A \cdots O2^{v} \\ O1 - H28 \cdots O9^{iv} \\ O4 - H21 \cdots O11 \\ O1W - H1WA \cdots O3^{i} \\ O1W - H1WA \cdots O11^{i} \end{array}$	0.90	1.96	2.8365 (10)	163
	0.88	1.82	2.6931 (12)	175
	0.93	2.20	3.098 (3)	162
	0.85	1.84	2.6616 (11)	161
	0.85	1.79	2.6330 (11)	169
	0.96 (6)	2.26 (5)	2.9012 (11)	123.6
	0.96 (6)	2.47 (6)	3.1575 (16)	128.4

Symmetry codes: (i) $-x, y, -z + \frac{1}{2}$; (ii) -x, -y + 1, -z; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (iv) $-x + \frac{1}{2}, y + \frac{1}{2}, z$; (v) $x, -y + 1, z - \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Beijing Municipal Natural Science Foundation (No. 2082004) and the Seventh Technology Fund for Postgraduates of Beijing University of Technology.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2172).

References

Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928. Sakai, T., Hamada, T., Awata, N. & Watanabe, J. (1989). J. Pharmacobio-

Dynam. **12**, 530–536.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

White, E. H. & Matsuo, K. (1967). J. Org. Chem. 32, 1921-1926.

Mo $K\alpha$ radiation $\mu = 0.24 \text{ mm}^{-1}$

 $0.12 \times 0.11 \times 0.10 \text{ mm}$

11525 measured reflections

2413 independent reflections

1994 reflections with $I > 2\sigma(I)$

T = 296 K

 $R_{\rm int} = 0.060$

supplementary materials

Acta Cryst. (2009). E65, o1335 [doi:10.1107/S1600536809018182]

Bis(5,6-dicarboxybenzimidazolium) sulfate monohydrate

Y. Cui, Q. Gao, C.-Y. Zhang and Y.-B. Xie

Comment

Benzimidazole and related heterocyclic compounds have been extensively investigated because of their pharmacological activities (Sakai *et al.*, 1989) and the application as intermediate for the synthesis of chemiluminescent compound (White & Matsuo, 1967). Otherwise, this kind of compounds is one of the most prevalent ligands in the field of coordination chemistry (Gao *et al.*, 2008). Herein, we report the crystal structure of the title compound (Fig. 1), Bis(1*H*-benzimidazolium-5,6-di-carboxyl) sulfate monohydrate.

The title compound consists of two 1*H*-benzimidazole-5,6-dicarboxylic acid cations, one sulfate dianion and one water molecule. The sulfate S atom and the water O atom reside on crystallographic twofold axis. As one imine N atom on the benzimidazolium ring is protonated, there exsist positive charge in the ring (Scheme 1). The cations, dianions and water molecules are linked through a combination of intermolecular N—H···O, O—H···O and C—H···O hydrogen bonds (Table 1) to form a three-dimensional network structure.

Experimental

A solution containing a 2:1 molar ratio of $ZnSO_4$ and 1*H*-benzoimidazole-5,6-dicarboxylate in water was sealed in a 25 ml teflon reactor and kept at 393K for 3 days. Then the mixture was filtered and the filtrate was allowed to stand at room temperature. Colorless block crystals suitable for the X-ray investigation were collected.

Refinement

The water H atoms were located in a difference Fourier map and freely refined. The N-bound H atoms were located in a difference Fourier map and fixed during the refinement with $U_{iso}(H) = 1.2U_{eq}(N)$. The C-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. A view of the molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level for non-hydrogen atoms. Symmetry related atoms labelled A have the symmetry code A = -x, y, 1/2 - z.

Bis(5,6-dicarboxybenzimidazolium) sulfate monohydrate

Crystal data $2C_9H_7N_2O_4^+ \cdot S_1O_4^{2-} \cdot H_2O$ $M_r = 528.41$

 $F_{000} = 1088$ $D_x = 1.704 \text{ Mg m}^{-3}$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 14.691 (3) Å b = 7.7968 (17) Å c = 17.983 (4) Å V = 2059.8 (8) Å³ Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer	2413 independent reflections
Radiation source: fine-focus sealed tube	1994 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.060$
T = 296 K	$\theta_{\text{max}} = 27.8^{\circ}$
φ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: Multi-scan (SADABS; Bruker, 1998)	$h = -17 \rightarrow 16$
$T_{\min} = 0.971, \ T_{\max} = 0.976$	$k = -9 \rightarrow 9$
11525 measured reflections	$l = -21 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.048$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.138$	$w = 1/[\sigma^2(F_o^2) + (0.0847P)^2 + 0.8915P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
2413 reflections	$\Delta \rho_{max} = 0.46 \text{ e} \text{ Å}^{-3}$
168 parameters	$\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Mo Kα radiation

Cell parameters from 2413 reflections

 $\lambda = 0.71073 ~\text{\AA}$

 $\theta = 2.3 - 25.0^{\circ}$

 $\mu = 0.24 \text{ mm}^{-1}$ T = 296 K

Block, colorless

 $0.12 \times 0.11 \times 0.10 \text{ mm}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.35417 (10)	0.1890 (2)	0.09502 (8)	0.0418 (4)
H28	0.3685	0.1903	0.1408	0.050*
O2	0.22201 (11)	0.2483 (3)	0.15019 (8)	0.0553 (5)
O3	0.00994 (12)	0.3035 (2)	0.08983 (10)	0.0586 (5)
O4	0.08286 (11)	0.05673 (19)	0.07644 (9)	0.0474 (4)
H21	0.0465	0.0172	0.1089	0.057*
N1	0.29633 (11)	0.4817 (2)	-0.16017 (8)	0.0344 (4)
H25	0.3535	0.4982	-0.1718	0.041*
N2	0.15053 (11)	0.5073 (2)	-0.17520 (9)	0.0358 (4)
H22	0.0969	0.5355	-0.1962	0.043*
C1	0.26786 (14)	0.2354 (2)	0.09487 (10)	0.0339 (4)
C2	0.23266 (12)	0.2806 (2)	0.01950 (9)	0.0280 (4)
C3	0.29283 (11)	0.3365 (2)	-0.03408 (10)	0.0293 (4)
H3A	0.3554	0.3271	-0.0276	0.035*
C4	0.25595 (12)	0.4077 (2)	-0.09819 (9)	0.0282 (4)
C5	0.23151 (14)	0.5390 (3)	-0.20452 (11)	0.0381 (4)
H5A	0.2413	0.5936	-0.2498	0.046*
C6	0.16218 (12)	0.4236 (2)	-0.10814 (10)	0.0295 (4)
C7	0.10081 (12)	0.3636 (2)	-0.05544 (10)	0.0316 (4)
H7A	0.0383	0.3721	-0.0626	0.038*
C8	0.13689 (12)	0.2909 (2)	0.00784 (10)	0.0301 (4)
C9	0.07088 (12)	0.2201 (3)	0.06351 (11)	0.0345 (4)
S1	0.0000	-0.14201 (8)	0.2500	0.0295 (2)
09	0.07896 (13)	-0.2429 (2)	0.22937 (9)	0.0630 (6)
011	-0.02520 (10)	-0.0310 (2)	0.18688 (9)	0.0533 (5)
O1W	0.0000	0.3439 (3)	0.2500	0.0540 (6)
H1WA	-0.024 (5)	0.266 (8)	0.286 (3)	0.20 (3)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0398 (8)	0.0540 (9)	0.0318 (7)	0.0075 (6)	-0.0091 (6)	0.0022 (6)
O2	0.0509 (9)	0.0893 (13)	0.0258 (7)	0.0019 (9)	0.0010 (6)	-0.0032 (7)
O3	0.0511 (10)	0.0602 (10)	0.0645 (11)	0.0225 (8)	0.0302 (8)	0.0198 (9)
O4	0.0501 (9)	0.0412 (8)	0.0510 (9)	0.0022 (7)	0.0229 (7)	0.0079 (7)
N1	0.0301 (8)	0.0445 (9)	0.0285 (8)	-0.0057 (7)	0.0029 (6)	0.0030 (6)
N2	0.0331 (8)	0.0436 (9)	0.0306 (8)	-0.0038 (7)	-0.0061 (6)	0.0050 (7)
C1	0.0392 (10)	0.0365 (10)	0.0260 (9)	-0.0010 (8)	-0.0034 (7)	-0.0017(7)
C2	0.0283 (8)	0.0305 (9)	0.0253 (8)	0.0027 (7)	-0.0014 (6)	-0.0028 (6)
C3	0.0239 (8)	0.0355 (10)	0.0284 (8)	-0.0007 (7)	-0.0010 (6)	-0.0025 (7)
C4	0.0264 (8)	0.0330 (9)	0.0252 (8)	-0.0035 (7)	0.0010 (6)	-0.0035 (7)
C5	0.0404 (10)	0.0445 (11)	0.0295 (9)	-0.0061 (9)	-0.0012 (8)	0.0035 (8)
C6	0.0281 (8)	0.0328 (9)	0.0275 (8)	-0.0020 (7)	-0.0039 (6)	-0.0003 (7)
C7	0.0222 (8)	0.0381 (10)	0.0345 (9)	-0.0011 (7)	0.0002 (7)	0.0012 (7)

supplementary materials

C8 C9 S1 O9 O11 O1W	0.0292 (8) 0.0287 (9) 0.0309 (3) 0.0814 (13) 0.0300 (7) 0.0597 (16)	0.0321 (9) 0.0426 (11) 0.0334 (4) 0.0702 (12) 0.0781 (11) 0.0487 (14)	0.0291 (9) 0.0323 (9) 0.0243 (3) 0.0374 (8) 0.0517 (9) 0.0538 (15)	0.0009 (7) 0.0032 (7) 0.000 0.0449 (10) 0.0056 (8) 0.000	0.0040 (7) 0.0055 (7) 0.0043 (2) 0.0205 (8) 0.0054 (6) -0.0195 (11)	-0.0014 (7) 0.0038 (8) 0.000 0.0090 (8) 0.0308 (8) 0.000
Geometric param	neters (Å, °)					
O1—C1 O1—H28 O2—C1 O3—C9 O4—C9 O4—C9 O4—H21 N1—C5 N1—C4		1.319 (2) 0.8499 1.205 (2) 1.204 (2) 1.306 (3) 0.8496 1.320 (3) 1.388 (2)	C2—C8 C3—C4 C3—H3 C4—C6 C5—H3 C6—C7 C7—C8 C7—H	3 4 5 5 7 7 8 7 7 4	1.4 1.3 0.9 1.3 0.9 1.3 1.3 0.9	25 (2) 89 (3) 300 95 (3) 300 89 (3) 77 (3) 300
N1—H25		0.8747	C8—C9		1.499 (2)	
N2—C5		1.325 (3)	S1—O9) ¹	1.4	498 (16)
N2—C6		1.382 (2)	S1—09)	1.4	498 (16)
N2—H22		0.9011	S1—01	11	1.4	745 (15)
C1 - C2		1.493 (2)	SI—01		1.4	-/45 (15)
$C_2 = C_3$		1.373 (2)	N1 C4	5 H5A	0.9	1 0
C1=01=H28		113.0	N1—C.	5—Н5А 5—Н5А	124	+.9 1 9
C5—N1—C4		108.51 (16)	N2—C	5—C7	132	2.38 (17)
C5—N1—H25		119.9	N2—Ce	6—C4	106	6.03 (15)
C4—N1—H25		131.5	C7—C6	6—C4	121	1.58 (17)
C5—N2—C6		108.92 (16)	C8—C7	7—С6	116	6.90 (17)
C5—N2—H22		124.9	C8—C7	/—H7A	121	1.6
C6—N2—H22		126.1	C6—C7	/—H7A	121	1.6
O2—C1—O1		123.95 (17)	C7—C8	3—C2	121	1.67 (16)
O2—C1—C2		122.41 (18)	C7—C8	3—С9	117	7.03 (16)
01—C1—C2		113.55 (16)	C2—C8	3—C9	121	1.30 (16)
C_{3} C_{2} C_{8}		120.82 (16)	03—C9	9-04	123	3.86 (18)
$C_3 = C_2 = C_1$		119.15 (16)	03-09	$-C^{8}$	122	2.97(18)
C_{3} C_{2} C_{4}		117.14 (16)	04—C:	1 00	11.	1.20(17)
$C_2 = C_3 = C_4$		117.14 (10)	09	1-09	114	+.29 (17)
С2—С3—НЗА		121.4	09 ⁴ —S	1—011 ¹	108	8.80 (9)
С4—С3—Н3А		121.4	O9—S1		108	8.33 (10)
N1—C4—C3		131.72 (17)	O9 ¹ —S	1—011	108	8.33 (10)
N1-C4-C6		106.39 (15)	O9—S1	011	108	8.80 (9)
C3—C4—C6		121.81 (16)	011 ⁱ —9	S1—O11	108	8.15 (16)
N1—C5—N2		110.14 (17)				

Symmetry codes: (i) -x, y, -z+1/2.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1WA···O3 ⁱ	0.96 (6)	2.26 (5)	2.9012 (11)	123.6
O1W—H1WA···O11 ⁱ	0.96 (6)	2.47 (6)	3.1575 (16)	128.4
O4—H21…O11	0.85	1.79	2.6330 (11)	169
N2—H22···O1W ⁱⁱ	0.90	1.96	2.8365 (10)	163
N1—H25…O11 ⁱⁱⁱ	0.88	1.82	2.6931 (12)	175
O1—H28···O9 ^{iv}	0.85	1.84	2.6616 (11)	161
C5—H5A···O2 ^v	0.93	2.20	3.098 (3)	162
Symmetry codes: (i) $-x, y, -z+1/2$; (ii) $-x, -y$	x+1, -z; (iii) $x+1/2, -y+1$	1/2, -z; (iv) $-x+1/2,$	y+1/2, z; (v) x, -y+1, z	z - 1/2.

